STATE OF INDIANA CAC EXHIBIT C (DAS) INDIANA UTILITY REGULATORY COMMISSION

VERIFIED PETITION OF DUKE ENERGY INDIANA, INC.,)	
(1) SEEKING AUTHORITY TO REFLECT COSTS	,	
INCURRED FOR THE EDWARDSPORT INTEGRATED	`	
GASIFICATION COMBINED CYCLE GENERATING)	
FACILITY ("IGCC PROJECT") PROPERTY UNDER		
CONSTRUCTION IN ITS RATES AND AUTHORITY TO)	CAUSE NO. 43114
RECOVER EXERNAL COSTS THROUGH ITS INTEGRATED	,	CAUSE NO. 43114
COAL GASIFICATION COMBINED CYCLE GENERATING	`	IGCC-1
FACILITY COST RECOVERY ADJUSTMENT, STANDARD)	IGCC-I
CONTRACT RIDER NO. 61 PURSUANT TO IND. CODE		
SECTIONS 8-1-8.8-11 AND -12; (2) SEEKING AN EXPEDITED)	
APPROVAL OF AN UPDATED COST ESTIMATE FOR THE	,	
IGCC PROJECT, INCLUDING APPROVAL OF AN	`	
ONGOING REVIEW PROGRESS REPORT PURSUANT TO)	
IND. CODE 8-1-8.7; AND (3) SEEKING APPROVAL OF AND		
COST RECOVERY ASSOCIATED WITH THE STUDY OF)	
CARBON CAPTURE, SEQUESTRATION AND/OR	,	
ENHANCED OIL RECOVERY FOR THE IGCC PROJECT	`	
PURSUANT TO AN ALTERNATIVE REGULATORY PLAN)	
UNDER IND. CODE SECTION 8-1-2.5-6		

DIRECT TESTIMONY OF DAVID A. SCHLISSEL
ON BEHALF OF THE
CITIZENS ACTION COALITION OF INDIANA
SAVE THE VALLEY
VALLEY WATCH
SIERRA CLUB
JULY 22, 2008

PUBLIC VERSION PROTECTED MATERIALS REDACTED

Table of Contents

1.	Introduction and Qualifications
2.	Summary of Conclusions and Recommendations
3.	Duke Should Have Anticipated in Cause No. 43114 that the Cost of the Edwardsport Project would Exceed its \$1.985 Billion Estimate
4.	It is Reasonable to Assume that the Cost of the Edwardsport Project Will Exceed Duke's Current \$2.350 Billion Estimate
5.	The Company Has Used an Unreasonably Low Set of CO ₂ Prices in its New Strategist Modeling Analyses
6.	Duke Overstates the Threat Posed to Ratepayers by Adding New Natural Gas Generation in Place of the Edwardsport Project
	List of Exhibits
Exhi	bit DAS-1: Resume of David Schlissel

2	Q.	What is your name, position and business address?
3	A.	My name is David A. Schlissel. I am a Senior Consultant at Synapse Energy
4		Economics, Inc, located at 22 Pearl Street, Cambridge, MA 02139.
5	Q.	Please describe Synapse Energy Economics.
6	A.	Synapse Energy Economics ("Synapse") is a research and consulting firm
7		specializing in energy and environmental issues, including electric generation,
8		transmission and distribution system reliability, market power, electricity market
9		prices, stranded costs, efficiency, renewable energy, environmental quality, and
10		nuclear power.
11		Synapse's clients include state consumer advocates, public utilities commission
12		staff, attorneys general, environmental organizations, federal government and
13		utilities. A complete description of Synapse is available at our website,
14		www.synapse-energy.com.
15	Q.	Please summarize your educational background and recent work experience.
16	A.	I graduated from the Massachusetts Institute of Technology in 1968 with a
	A.	I graduated from the Wassachusetts institute of Technology in 1700 with a
17	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of
17 18	A.	÷.
	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of
18	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a
18 19	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering
18 19 20	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering at the Massachusetts Institute of Technology during the years 1983-1986.
18 19 20 21	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering at the Massachusetts Institute of Technology during the years 1983-1986. Since 1983 I have been retained by governmental bodies, publicly-owned utilities,
18 19 20 21 22	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering at the Massachusetts Institute of Technology during the years 1983-1986. Since 1983 I have been retained by governmental bodies, publicly-owned utilities, and private organizations in 28 states to prepare expert testimony and analyses on
18 19 20 21 22 23	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering at the Massachusetts Institute of Technology during the years 1983-1986. Since 1983 I have been retained by governmental bodies, publicly-owned utilities, and private organizations in 28 states to prepare expert testimony and analyses on engineering and economic issues related to electric utilities. My recent clients
18 19 20 21 22 23 24	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering at the Massachusetts Institute of Technology during the years 1983-1986. Since 1983 I have been retained by governmental bodies, publicly-owned utilities, and private organizations in 28 states to prepare expert testimony and analyses on engineering and economic issues related to electric utilities. My recent clients have included the New Mexico Public Regulation Commission, the General Staff
18 19 20 21 22 23 24 25	A.	Bachelor of Science Degree in Engineering. In 1969, I received a Master of Science Degree in Engineering from Stanford University. In 1973, I received a Law Degree from Stanford University. In addition, I studied nuclear engineering at the Massachusetts Institute of Technology during the years 1983-1986. Since 1983 I have been retained by governmental bodies, publicly-owned utilities, and private organizations in 28 states to prepare expert testimony and analyses on engineering and economic issues related to electric utilities. My recent clients have included the New Mexico Public Regulation Commission, the General Staff of the Arkansas Public Service Commission, the Staff of the Arizona Corporation

1		towns in Connecticut, New York and Virginia, state consumer advocates, and
2		national and local environmental organizations.
3		I have testified before state regulatory commissions in Arizona, New Jersey,
4		Connecticut, Kansas, Texas, New Mexico, New York, Vermont, North Carolina,
5		South Carolina, Maine, Illinois, Indiana, Ohio, Massachusetts, Missouri, Rhode
6		Island, Wisconsin, Iowa, South Dakota, Georgia, Minnesota, Michigan and
7		Florida and before an Atomic Safety & Licensing Board of the U.S. Nuclear
8		Regulatory Commission.
9		A copy of my current resume is attached as Exhibit DAS-1.
10	Q.	On whose behalf are you testifying in this case?
11	A.	I am testifying on behalf of the Citizens Action Coalition of Indiana, Valley
12		Watch, Save the Valley and the Sierra Club – Hoosier Chapter.
13	Q.	Have you previously submitted testimony in Cause No. 43114?
14	A.	Yes. I filed Direct Testimony in Cause No. 43114 in May 2007 (CAC Exhibit E).
15	Q.	What is the purpose of this testimony.
16	A.	Synapse was retained to review the petition filed by Duke Energy Indiana
17		("Duke" and "the Company") on May 1, 2008 and the Company's related
18		testimony and exhibits. In particular, Synapse was asked to review the reasons for
19		the recent 18.4 percent increase in the estimated cost of the Edwardsport IGCC
20		Project, to examine whether further cost increases can be expected, and to analyze
21		whether Duke's new modeling analyses show that completion of the Edwardsport
22		Project is the least cost, lowest risk option. This testimony presents the results of
23		our analyses.
24	2.	Summary of Conclusions and Recommendations
25	Q.	Please summarize your primary conclusions.
26	A.	My primary conclusions are follows:

1 1. Duke should have anticipated that the cost of the Edwardsport Project 2 would increase above the \$1.985 billion cost estimate the Company 3 presented in Cause No. 43114. 4 2. It is reasonable to expect that the cost of the Edwardsport Project will 5 increase further in the four years or more until the Project is completed. 3. The updated Strategist modeling analyses presented by Duke witness 6 7 Jenner do not show that completion of the Project is the lowest cost, 8 lowest risk option for the Company's ratepayers. 9 4. Duke overstates the threat that the addition of new natural gas generation 10 in place of the Edwardsport Project poses to its ratepayers. 11 Q. Please summarize you primary recommendations. 12 A. The Commission should not approve the revised estimated construction cost for 13 the Edwardsport IGCC Project and should revoke the Certificate of Public 14 Convenience and Necessity for the proposed Project.

1 2	3.	Duke Should Have Anticipated in Cause No. 43114 that the Cost of the Edwardsport Project Would Exceed its \$1.985 Billion Estimate
3	Q.	Duke attributes the newly announced 18.4 percent increase in the estimated
4		cost of the Edwardsport Project to a number of factors including (1) "higher
5		than anticipated" contract costs from major vendors, (2) "higher than
6		expected" inflationary increases on major pieces of equipment, and (3)
7		"higher than average expected inflation" over the course of the construction
8		period, expected to be reflected in contractors' costs, labor costs, and other
9		equipment costs. Do you agree that the increases that the project
10		experienced were higher than could have reasonably been anticipated or
11		expected in the spring of 2007?
12	A.	No. I think that based on the construction environment that the Company
13		discussed in the testimony of Mr. Moreland in Cause No. 43114 and the evidence
14		that I presented in my Direct Testimony, it was clear that the \$1.985 billion cost
15		that Duke was estimating for the Edwardsport Project could rise significantly. ² Ir
16		fact, while I did not predict the specific cost increases that the Company has
17		included in its revised \$2.350 billion cost estimate, I did testify that it was
18		reasonable to assume that the proposed Edwardsport IGCC Project could
19		experience further cost increases before it is completed:
20 21 22 23 24 25		Duke may have to increase the estimated cost of the project once it completes its design and/or the selection of equipment suppliers. Moreover, any number of factors could lead to even higher costs during the remaining years before the proposed IGCC Project is completed, if indeed a Certificate is issued and the Project is allowed to continue. These factors could include the worldwide competition for
26 27 28 29		power plant equipment, commodities and labor, project delays, regulation-related costs, and weather conditions. Thus, there is no guarantee that the current capital cost estimate for the proposed IGCC Project will be the last. ³

Verified Petition, Cause No. 43114 IGCC-1, May, 1, 2008, at pages 6 and 7.

See the Direct Testimony of David A. Schlissel in Cause No. 43114, at page 31, line 30, to page 33, line 9.

^{3 &}lt;u>Id</u>, at page 33, lines 14-21.

1	Q.	What was the Company's response in Cause No. 43114 to your testimony on
2		this issue?
3	A.	Company witness Roebel responded that the \$1.985 billion cost estimate was:
4		as reasonable as possible at this time. As I have testified before
5		with respect to the Company's environmental compliance projects,
6		with any multi-year construction project I would expect to see
7		relatively minor changes from ongoing impacts and refinements to the
8		project as a normal part of an ongoing construction program. However,
9		with the completion of the [Front End Engineering Design] FEED
10		Study we have a significant amount of detailed knowledge about the
11 12		project, more knowledge than normal for this stage of a major project. We were given unprecedented access to the GE and Bechtel teams
13		working on the FEED Study and their work product. As we stated in
14		the FEED Study Report, Bechtel was able to perform take offs from
15		engineering drawings, a much more accurate method for estimating
16		quantities. Bechtel obtained current pricing for over 90% of the bulk
17		quantity materials and equipment from vendors. The estimate was
18		rigorous and performed by seasoned personnel using accepted
19		estimating techniques. In my opinion, the estimate is reasonable. ⁴
20		Mr. Roebel also testified that the then current \$1.985 billion estimate was based
21		on very recent quotes and estimates from vendors and suppliers and on pricing
22		data obtained as late as March, 2007. ⁵
23	Q.	Did Duke perform any sensitivity analyses in the Strategist modeling it
24		presented in Cause No. 43114 to reflect any potential increases in the capital
25		cost of the Edwardsport Project?
26	A.	No. As I discussed in my May 15, 2007 Direct Testimony, the Company actually
27		used an estimated cost for the Edwardsport Project that was approximately 5.2
		2
28		percent lower than its then currently estimated cost for the proposed Project. ⁶

Direct Testimony of David A. Schlissel, Cause No. 43114, at liens 1-14.

⁴ Rebuttal Testimony of John J. Roebel, Petitioner's Exhibit No. 27 in Cause No. 43114, at page 2, lines 7-20.

^{5 &}lt;u>Id</u>, at page 3, lines 17-19.

1	Q.	Should Duke have been confident in the spring of 2007 in the accuracy of its
2		\$1.985 billion estimated cost for the Edwardsport Project?

- 3 A. No. The estimated costs of many new coal-fired power plants were increasing as a 4 result of the very same factors that Duke and I cited in our testimony in Cause No. 5 43114, principally the worldwide competition for the resources, commodities and 6 equipment used in the design and construction of new power plants. Terms like 7 "skyrocketing" were being applied to power plant cost estimates. In an uncertain 8 environment like this, the Company should have allowed for the possibility that 9 the cost of the proposed Edwardsport Project would continue to rise, perhaps 10 significantly. However, it failed to do so even though, as I noted in my Direct 11 Testimony, the Company had prepared sensitivity analyses reflecting higher plant 12 capital costs for its proposed Cliffside Project in North Carolina.
- 4. It is Reasonable to Assume that the Cost of the Edwardsport Project
 Will Exceed Duke's Current \$2.350 Billion Estimate
- Do the factors which led to recent power plant construction cost increases in the past few years appear to have abated or diminished in any significant way?
- 18 A. No. It is reasonable to expect that the factors that have led to dramatic increases in 19 power plant construction costs in recent years will lead to further increases in 20 costs and in construction delays in the five or more years before the projects are 21 scheduled to be completed. For example, a May 15, 2008 story in the Wall Street 22 Journal noted that "escalating steel prices are halting and slowing major 23 construction projects worldwide and limiting shipbuilding and oil and gas 24 exploration." The same article noted that "Steel prices are up 40 percent to 50 25 percent since December, and industry executives say they have not reached a 26 peak" and "raw materials prices have surged in the past year, fueled in part 27 because of the rapid industrialization of China, India and other developing 28 nations."

-

⁷ <u>Id</u>, at page 34, lines 10-16.

1		Indeed, the evidence suggests that the worldwide competition for resources or the
2		existing supply constraints and bottlenecks affecting coal-fired plant construction
3		costs will not clear anytime in the foreseeable future.
4	Q.	Duke witness Turner testifies that "Industry trade publications are filled
5		with accounts of the upward pressure on construction costs as a result of [the
6		boom in the construction of new power plants and other major
7		infrastructure]." Do you agree?
8	A.	Yes.
9	Q.	Can you provide some examples of the recent cost increases experienced by
10		proposed coal-fired power plants since you filed your Direct Testimony in
11		Cause No. 43114 in May of 2007?
12	A.	Yes. Mr. Turner cites the examples of the cost increases announced for Santee
13		Cooper's Pee Dee River coal-fired power plant and Kansas City Power & Light's
14		Iatan 2 project. 9 In addition, increases have been reported for a significant number
15		of other proposed coal-fired power plant projects as well. For example, the
16		following are illustrative of the cost increases being experienced by proposed
17		coal-fired power plants:

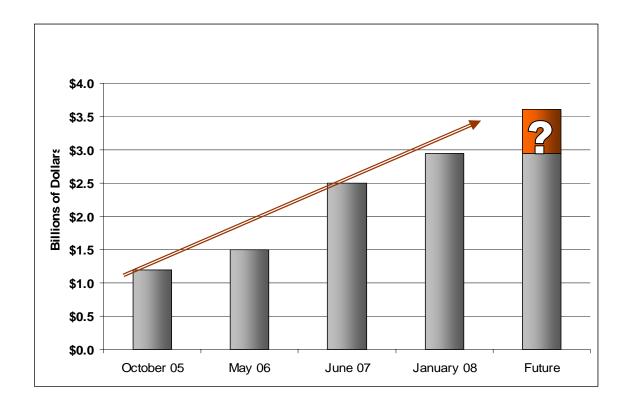
• The estimated cost of AMP-Ohio's proposed 960 MW coal-fired power plant increased by 15 percent in just the six months between June 2007 and January 2008. As shown in Figure 1 below, the estimated cost of the project had nearly doubled between May 2006 and January 2008. The estimated cost of the 960 MW project had risen to nearly \$3 billion, not including financing costs, representing a construction cost of more than \$3,100/kW.

9 <u>Id</u>, at page 8, lines 11-14.

_

18

19


20

21 22

23 24

⁸ Testimony of James L. Turner, Petitioner's Exhibit A, at page 8, lines 5-9.

Figure 1: AMP-Ohio AMPGS Cost Increases 2005-2008 (\$)

In mid-June 2008, Wisconsin Power & Light ("WPL") announced a nearly 40 percent increase in the estimated cost of its proposed 300 MW Nelson Dewey 3 coal-fired power plant. The previous estimate had been prepared in late 2006. The estimated cost for this Circulating Fluid Bed plant is now above \$3,500/kW, in early 2008 dollars. The company has similarly estimated that the cost of building a new supercritical coal plant, if it were started today, would exceed \$3,500/kW. In support of its new cost estimates, WPL presented testimony that noted that "EPC [Engineering, Procurement and Construction] pricing for other non-IGCC, primarily coal-fired generating projects under construction or in the planning stages have similarly increased with many projects falling in the \$2,500 to \$3,800/kW range, without AFUDC or uncommon owner's costs (e.g., major railway additions.)." 10

Nor are coal-fired power plants that are under construction immune to further cost increases. For example, as Mr. Turner noted, Kansas City Power & Light just announced a 15 percent price increase for the Iatan 2 power plant that has been under construction for several years and is scheduled to be completed by 2010.

	This shows that one cannot assume that the cost of a plant will be fixed when
	construction begins.
Q.	Have any proposed coal-fired power plants been delayed or cancelled during
	the past few years as a result of rising construction costs?
A.	Yes. Rising commodity prices and increasing construction cost risks have been
	responsible, at least in part, for the cancellation or delay of more than fifty
	proposed coal-fired power plants since mid-2006. The following examples are
	illustrative of the factors and risks which have contributed to these cancellations
	and delays:
	• Westar Energy announced in December 2006 that it was deferring site selection for a new 600 MW coal-fired power plant due to significant increases in the facility's estimated capital cost of 20 to 40 percent, over an 18 month period. This prompted Westar's Chief Executive to warn: "When equipment and construction cost estimates grow by \$200 million to \$400 million in 18 months, it's necessary to proceed with caution." As a result, Westar Energy has suspended site selection for the coal-plant and is considering other options, including building a natural gas plant, to meet growing electricity demand. The company also explained that:
	most major engineering firms and equipment manufacturers of coal-fueled power plant equipment are at full production capacity and yet are not indicating any plans to significantly increase their production capability. As a result, fewer manufacturers and suppliers are bidding on new projects and equipment prices have escalated and become unpredictable. ¹²
	 Tenaska Energy cancelled plans to build a coal-fired power plant in Oklahoma in 2007 because of rising steel and construction prices. According to the Company's general manager of business development:
	" coal prices have gone up "dramatically" since Tenaska started planning the project more than a year ago.
	And coal plants are largely built with steel, so there's the cost of the unit that we would build has gone up a lot At one

 $http://www.westarenergy.com/corp_com/corpcomm.nsf/F6BE1277A768F0E4862572690055581C/Sfile/122806\%20coal\%20plant\%20final2.pdf.$ 12

<u>Id</u>.

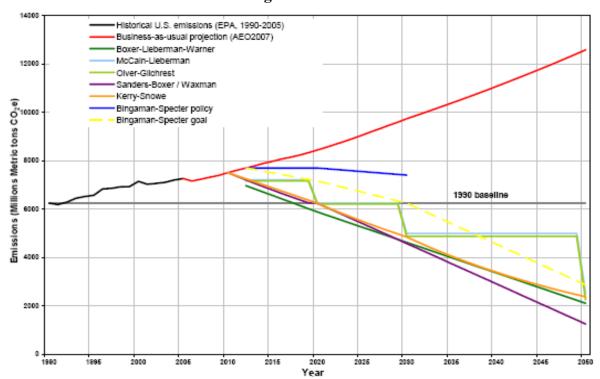
1 2 3	point in our development, we had some of the steel and equipment at some very attractive prices and that equipment all of a sudden was not available.
4 5 6 7 8	We went immediately trying to buy additional equipment and the pricing was so high, we looked at the price of the power that would be produced because of those higher prices and equipment and it just wouldn't be a prudent business decision to build it." ¹³
9 10 11 12 13	In April 2008, Associated Electric Cooperative, Inc., the wholesale power supplier for 57 electric cooperatives in Missouri, Southeast Iowa, and northeast Oklahoma, delayed its plans to build the Norborne 660 MW coal-fired power plant due to increasing costs and other uncertainties. According to AECI:
14 15 16 17	The Norborne project costs have significantly increased in less than three years and are now estimated at \$2 billion due to worldwide demand for engineering, skilled labor, equipment and materials.
18 19 20 21 22 23 24	The U.S. Department of Agriculture Rural Utilities Service, a traditional funding source for rural electric cooperatives, is currently unable to finance baseload generation for cooperatives. Although AECI's AA credit rating is one of the strongest ratings among all electric utilities nationally, seeking private lending would further increase project costs.
25 26 27 28 29	There also is increasing uncertainty in the regulatory environment, and Congress continues to debate the environmental and economic impact of reducing greenhouse gas emissions, making the cost of reducing carbon dioxide from power plants unknown. ¹⁴
30 31 32	At the same time it was cancelling its proposed coal plant, AECI noted that it would continue to look at energy efficiency initiatives, natural gas, renewable and nuclear resources to address future generation needs.
33 34 35	Xcel Energy announced in October 2007 that it was indefinitely deferring its plans to build an IGCC plant in Colorado because the development costs were higher than the utility originally expected. ¹⁵
36 37	Tampa Electric cancelled a proposed IGCC plant in the fall of 2007 due to uncertainty related to CO ₂ regulations, particularly capture and

Available at www.swtimes.com/articles/2007/07/09/news/news02.prt.

http://www.aeci.org/NR20080303.aspx.

Denver Business Journal, October 30, 2007.

1 2 3		sequestration issues, and the potential for related project cost increases. According to a press release, "Because of the economic risk of these factors to customers and investors, Tampa Electric believes it should not
4 5 6		proceed with an IGCC project at this time," although it remains steadfast in its support of IGCC as a critical component of future fuel diversity in Florida and the nation.
7 8 9		In June 2007, the Tondu Corp. announced that it was suspending plans to build a planned 600 MW IGCC facility in Texas citing high costs and other concerns related to technology and construction risks. ¹⁶
10	Q.	Is there any evidence in the Company's testimony that suggests that the cost
11		of the proposed Edwardsport Project could increase significantly above
12		Duke's current \$2.350 billion estimate?
13	A.	Yes. Duke witness Turner testifies that the current EPRI-based range of costs for
14		IGCC projects is \$2.325 to \$3.063 billion for a plant in service in 2012. ¹⁷
15		Although Mr. Turner is correct that the increased Edwardsport IGCC cost
16		estimate is within this range, it is at the very bottom end of the range.
17	Q.	Does the current Duke cost estimate for the Edwardsport IGCC Project
18		include the costs of adding carbon capture and sequestration?
19	A.	It appears that the answer is no.
20	Q.	Will all of the contract prices for the Edwardsport Project be fixed prior to
21		the start of the main construction activities?
22	A.	No. Duke is unclear about exactly which costs will not be fixed. However, it is
23		clear from Mr. Turner's testimony and the Company's response to data requests
24		that much, if not most, of the scope of the Project will not be covered by fixed
25		contract prices. 18 Thus, the Project will remain exposed to significant cost
26		escalation.


http://www.reuters.com/article/companyNewsAndPR/idUSN1526955320070615

Testimony of James L. Turner, Petitioner's Exhibit A, at page 8, line 21, to page 9, line 1.
For example, see the Testimony of James L. Turner, at page 10, lines 1-5 and Duke's response to CAC 1.6.

1	Q.	Is it your testimony that Duke should increase its estimated cost for the
2		Edwardsport IGCC Project at this time?
3	A.	No. However, Duke should have performed a series of sensitivity scenarios in its
4		new Strategist modeling analyses that reflect higher plant capital costs. It would
5		have been reasonable to assume increases of 20 percent and 40 percent for these
6		sensitivity scenarios. Instead, the Company remains overly optimistic that it will
7		not be forced by events beyond its control to raise the Edwardsport Project's
8		construction cost even further than the current \$2.350 billion estimate.
9	Q.	Did Duke perform any sensitivity scenarios for higher plant construction
10		costs as part of the Strategist modeling analyses discussed by Company
11		witness Jenner?
12	A.	No. Despite having been wrong about the accuracy/reasonableness of its \$1.985
13		billion cost estimate in May 2007, Duke has assumed that there will be no further
14		increases beyond its current \$2.350 billion estimated cost. Consequently, Duke
15		has assumed that it will not experience any further cost increases in the four years
16		or more that the Project will remain under construction even though the estimated
17		cost of the Project has increased by 18.4 percent in just the past year.
18	Q.	Should the Commission set a cap on the construction cost that Duke is able to
19		recover from ratepayers?
20	A.	Yes. If the Company is confident in its current cost estimate, as its witnesses have
21		testified in this proceeding, Duke should be willing to agree to cap its cost
22		recovery for the proposed plant to its current cost estimate, less any federal, state,
23		and local incentives it may receive. That way Duke, and not its ratepayers, would
24		bear the risks associated with further cost increases. This is especially true given
25		the relatively small Net Present Value benefits that the Company's new Strategist
26		modeling runs show for completion of the Edwardsport Project.

1 2	5.	The Company Has Used an Unreasonably Low Set of CO_2 Prices in its New Strategist Modeling Analyses
3	Q.	What CO ₂ prices did Duke use in the new Strategist modeling analyses
4		discussed by Company witness Jenner?
5	A.	[REDACTED]
6		
7	Q.	How was this forecast developed?
8	A.	The forecast was based on the safety valve prices included in the legislation
9		introduced in the current U.S. Congress by Senators Bingaman and Specter.
10	Q.	Does the CO ₂ price forecast used by Duke reasonably capture the possible
11		magnitude of greenhouse gas regulations that would apply to the Duke
12		Energy Indiana system?
13	A.	No. First, because of the uncertainty surrounding future greenhouse gas
14		regulation, it is appropriate to consider a range of CO ₂ emissions allowance
15		prices, just as resource planners, including Duke, normally consider a range of
16		projected fuel prices. Second, there is really no compelling reason why Senator
17		Bingaman and Specter's proposed legislation would be passed by Congress and
18		enacted into law over all of the other major climate change bills currently in
19		Congress. It is certainty not the only bill that has garnered significant attention.
20		Moreover, unlike the legislation introduced by Senators Lieberman and Warner,
21		the Bingaman-Specter bill was not voted out of committee in the Senate nor
22		debated and voted on by the entire Senate.
23	Q.	Is the Bingaman-Specter proposal consistent with the other climate change
24		legislation that has been introduced in the current Congress?
25	A.	No. As shown in Figure 2 and Table 1 below, all of the other major bills that have
26		been introduced in Congress would require significantly larger reductions in CO ₂
27		emissions than the Bingaman-Specter proposal.

Figure 2: Emissions Reductions Required under Climate Change Bills in Current U.S. Congress¹⁹

3

1 2

4

 $Source-Pew\ Center\ on\ Global\ Climate\ Change\ -\ http://www.pewclimate.org/docUploads/Cap-and-Trade-Chart.pdf.$

Table 1. Summary of Mandatory Emissions Targets in Proposals Introduced in the current U.S. Congress

			ent U.S. Congress	
Proposed National Policy	Title or Description	Year Proposed	Emission Targets	Sectors Covered
Feinstein-Carper S.317	Electric Utility Cap & Trade Act	2007	 2006 level by 2011 2001 level by 2015 1%/year reduction from 2016-2019 1.5%/year reduction starting in 2020 	Electricity sector
Kerry-Snowe S.485	Global Warming Reduction Act	2007	 2010 level from 2010-2019 1990 level from 2020-2029 2.5%/year reductions from 2020-2029 3.5%/year reduction from 2030-2050 65% below 2000 level in 2050 	Economy-wide
McCain-Lieberman S.280	Climate Stewardship and Innovation Act	2007	 2004 level in 2012 1990 level in 2020 20% below 1990 level in 2030 60% below 1990 level in 2050 	Economy-wide
Sanders-Boxer S.309	Global Warming Pollution Reduction Act	2007	 2%/year reduction from 2010 to 2020 1990 level in 2020 27% below 1990 level in 2030 53% below 1990 level in 2040 80% below 1990 level in 2050 	Economy-wide
Olver, et al HR 620	Climate Stewardship Act	2007	 Cap at 2006 level by 2012 1%/year reduction from 2013-2020 3%/year reduction from 2021-2030 5%/year reduction from 2031-2050 equivalent to 70% below 1990 level by 2050 	US national
Bingaman–Specter S.1766	Low Carbon Economy Act	2007	 2012 levels in 2012 2006 levels in 2020 1990 levels by 2030 President may set further goals >60% below 2006 levels by 2050 contingent upon international effort 	Economy-wide
Lieberman-Warner S. 2191	America's Climate Security Act	2007	 2005 level in 2012 1990 level in 2020 65% below 1990 level in 2050 	U.S. electric power, transportation, and manufacturing sources.
Boxer-Lieberman- Warner S. 3036	Substitute for S. 2191	2008	 4% below 2005 level in 2012 19% below 2005 level in 2020 71% below 2005 level in 2050 	Economy wide
Markey HR. 6186	The Investing in Climate Action and Protection Act	2008	 2005 level in 2012 20% below 2005 level by 2020 80% below 2005 level by 2050 	Economy wide

1

2

1	Q.	How do the CO ₂ prices used by Duke in its new Strategist analyses compare
2		with the CO ₂ prices that would be required to achieve the emissions
3		reductions that would be mandated by the climate change bills shown in
4		Table 1 and Figure 2?
5	A.	There have been a large number of independent modeling analyses of climate
6		change proposals in the current U.S. Congress. As shown in Figures 3 and 4
7		below, the CO2 prices used by Duke in its new Strategist modeling are low
8		compared to the CO ₂ prices that result from analyses of the major climate change
9		bills that have been introduced in the current Congress and their corresponding
10		greenhouse gas emissions reduction goals.
11		The three red lines in Figure 3 represent the current Synapse High, Mid and Low
12		CO ₂ price forecasts that I will discuss later in this testimony. The black line at the
13		bottom represents the CO ₂ prices used by Duke in its new Edwardsport Strategist
14		modeling analyses. The other lines in Figure 3 reflect the approximately 75
15		scenarios examined in the various independent modeling analyses of the current
16		climate change proposals.

1 2 3 4	Figure 3:	Duke CO ₂ Prices versus Results of Independent Analyses of Climate Change Bills in Current U.S. Congress (Annual Costs in 2007\$ per short ton of carbon dioxide equivalent) [REDACTED]
5		
6 7		
8		
9		
10		
11		
12		
13 14		

1	Figure 4:	Duke CO ₂ Prices versus Results of Independent Analyses of
2		Climate Change Bills in Current U.S. Congress (Levelized
3		Costs 2013-2030 in 2007\$ per short ton of carbon dioxide
4		equivalent) [REDACTED]]

5		
6		It is clear from Figures 3 and 4 that the CO ₂ prices used by Duke Energy Indiana
7		in the new Strategist modeling analyses presented by Ms. Jenner are at the
8		extreme low end of the results of other analyses.
9	Q.	What are the independent sources of the annual and CO ₂ prices presented in
10		Figures 3 and 4?
11	A.	The CO ₂ prices shown in Figures 3 and 4 above have been developed from the
12		results of the following independent analyses:
13 14 15 16		• The Energy Information Administration of the U.S. Department of Energy's ("EIA") assessment of the Energy Market and Economic Impacts of S. 280, the Climate Stewardship and Innovation Act of 2007 (July 2007).

1 2 3	•	The October 2007 Supplement to the EIA's assessment of the Energy Market and Economic Impacts of S. 280, the Climate_Stewardship and Innovation Act of 2007.
4 5	•	The EIA's assessment of the Energy Market and Economic Impacts of S. 1766, the Low Carbon Economy Act of 2007 (January 2008).
6 7	•	The EIA's assessment of the Energy Market and Economic Impacts of S. 2191, the Lieberman-Warner Climate Security Act of 2007 (April 2008).
8 9 10	•	The U.S. Environmental Protection Agency's ("EPA") Analysis of the Climate Stewardship and Innovation Act of 2007 – S. 280 in 110 th Congress (July 2007).
11 12	•	The EPA's Analysis of the Low Carbon Economy Act of 2007 – S. 1766 in 110 th Congress (January 2008).
13 14	•	The EPA's Analysis of the Lieberman-Warner Climate Security Act of 2007 – S. 2191 in 110 th Congress (March 2008).
15 16 17	•	Assessment of U.S. Cap-and-Trade Proposals by the Joint Program at the Massachusetts Institute of Technology ("MIT")on the Science and Policy of Global Change (April 2007)
18 19 20	•	Analysis of the Cap and Trade Features of the Lieberman-Warner Climate Security Act – S. 2191 by the Joint Program at MIT on the Science and Policy of Global Change (April 2008).
21 22 23 24	•	The Lieberman-Warner America's Climate Security Act: A Preliminary Assessment of Potential Economic Impacts, prepared by the Nicholas Institute for Environmental Policy Solutions, Duke University and RTI International (October 2007).
25 26 27	•	The Lieberman-Warner Climate Security Act – S. 2191, Modeling Results from the National Energy Modeling System – Preliminary Results, Clean Air Task Force, January 2008.
28 29	•	Economic Analysis of the Lieberman-Warner Climate Security Act of 2007 Using CRA's MRN-NEEM Model, CRA International, April 2008.
30 31 32 33	•	Analysis of the Lieberman-Warner Climate Security Act (S. 2191) using the National Energy Modeling System (NEMS/ACCF/NAM), a report by the American Council for Capital Formation and the National Association of Manufacturers, NMA, March 2008.

1	Q.	How did you develop the 2008 Synapse CO ₂ price forecasts that are included
2		in Figures 3 and 4?
3	A.	The Synapse CO ₂ price forecasts shown in Figure 3 begin in 2013. This assumes
4		that climate change legislation will be passed by the next Congress and that the
5		implementation of the regulatory scheme will take two years.
6		The Synapse Low CO ₂ Price Forecast starts at \$10/ton in 2013, in 2007 dollars,
7		and increases to approximately \$23/ton in 2030. This represents a \$15/ton
8		levelized price over the period 2013-2030, in 2007 dollars.
9		This Low Forecast reflects our judgment that Congress begins regulation of
10		greenhouse gas emissions slowly by either:
11		• including a very modest or loose cap, especially in the initial years,
12 13		• including a safety valve price similar to the Technology Accelerator Payment in the current Bingaman-Specter Legislation (S. 1766), or
14 15		 allowing for substantial offset flexibility including the use of substantial numbers of international offsets.
16		Alternatively, this Low Forecast may reflect a decision by Congress to adopt a set
17		of aggressive complementary policies as part of a package to reduce CO2
18		emissions. These complementary policies could include a substantial Renewal
19		Portfolio Standard, increased automobile CAFÉ mileage standards, and/or
20		substantial energy efficiency investments. Such complementary policies would
21		lead directly to a reduction in CO ₂ emissions independent of federal cap-and-trade
22		or carbon tax policies, and would lower the overall cost of reaching any particular
23		federally-mandated goal.
24		The Synapse High CO ₂ Price Forecast starts at \$30/ton in 2013, in 2007 dollars,
25		and rises to approximately \$68/ton in 2030. This High Forecast represents a
26		\$45/ton levelized price over the period 2013-2030, also in 2007 dollars.
27		This High CO ₂ Price Forecast reflects somewhat more aggressive emissions
28		reduction targets, greater restrictions on the use of offsets, some restrictions on the
29		availability or cost of technology alternatives such as nuclear, biomass and carbon
30		capture and sequestration, and more aggressive international actions (thereby

1		resulting in fewer inexpensive international offsets available for purchase by U.S.
2		emitters). Our High CO ₂ Price Forecast does not reflect the adoption of aggressive
3		complementary policies in the United States.
4		Synapse also has prepared a Mid CO ₂ Price Forecast that starts relatively low,
5		\$15/ton in 2013, in 2007 dollars, but then climbs to \$53/ton by 2030. The
6		levelized cost of this mid CO2 price forecast is \$30/ton, in 2007 dollars, which is
7		the midpoint between the \$15/ton Low CO ₂ Price Forecast and the \$45/ton High
8		CO ₂ Price Forecast. The Mid CO ₂ price forecast represents a scenario in which
9		CO ₂ prices begin rather low, as in the Synapse Low CO ₂ Price Forecast but then
10		climb significantly over time as federal regulation of CO2 emissions becomes
11		progressively more stringent.
12	Q.	Are there credible CO ₂ price scenarios even higher than the Synapse High
13		CO ₂ Price Forecast?
14	A.	Yes. There are some credible CO ₂ price scenarios that are significantly higher
15		than our Synapse High Price Forecast. These scenarios would place greater
16		restrictions on the availability of alternatives to carbon-emitting technologies
17		and/or would more strictly constrain the use of international and domestic offsets.
18		However, we do not believe that the CO ₂ prices developed in such scenarios are
19		likely given political considerations, because there may potentially be avenues
20		available for meeting likely emissions goals that would mitigate the cost to below
21		these levels. But this may change over time due to changes in technical,
22		economic, and political circumstances, more stringent CO2 emissions targets,
23		and/or developments in scientific evidence.
24	Q.	What are the bases for the Synapse High, Mid and Low CO ₂ price forecasts?
25	A.	In general, our CO ₂ price forecasts are based on:
26 27		• Our review of the current political conditions in the U.S. concerning climate change;
28 29 30		• The results of publicly available modeling analyses of the climate change proposals that have been introduced in the current U.S. Congress that I have identified above;

1 2		• The ranges of CO ₂ prices that have been used by the financial community, regulatory commissions and utilities in electric resource planning;
3 4 5		 Our review of the estimated costs for such technology alternatives as energy efficiency, renewable resources, nuclear power, and carbon capture and sequestration;
6 7		• Our work experience on global climate change and electric resource planning issues and our professional judgment.
8	Q.	Ms. Jenner has testified that Duke has used the same CO ₂ prices in its new
9		Strategist modeling of the Edwardsport Project that it used in its 2007 IRP
10		analyses. ²⁰ Is this correct?
11	A.	Not entirely. In its 2007 IRP Duke prepared a set of sensitivity analyses using
12		what it termed a "High Carbon Case." However, the Company has used only a
13		single set of CO ₂ prices in this proceeding. As shown in Figure 5, below, the CO ₂
14		prices in this "High Carbon Case" were substantially higher than the CO ₂ prices
15		Duke has used in this proceeding.

Direct Testimony of Diane L. Jenner, Petitioner's Exhibit C, at page 4, lines 15-16.

Figure 5: Duke CO₂ IRP "High Carbon Case" Prices versus the CO₂
Prices Used in the Strategist Modeling for this Proceeding
(Annual Costs in 2007\$ per short ton carbon dioxide
equivalent) [REDACTED]

5

6 7 Q. What CO₂ prices do you recommend that Duke be required to use when reexamining the economics of continuing the Edwardsport IGCC Project?

8 A. We believe that the Synapse High, Mid and Low CO₂ price forecasts represent a
9 reasonable range of emissions allowance prices that should be used in resource
10 planning analyses like those presented by Duke witness Jenner. But even if the
11 IURC were to decide not to require Duke to use the Synapse CO₂ price forecasts
12 in this proceeding, the Company should be required, at an absolute minimum, to
13 prepare a set of analyses using the "High Carbon Case" that it used in its 2007
14 IRP modeling.

1 2	6.	Duke Overstates the Threat Posed to Ratepayers by Adding New Natural Gas Generation in Place of the Edwardsport Project
3	Q.	Do you agree with Ms. Jenner that a utility should have concerns with over-
4		reliance on natural gas? ²¹
5	A.	In general, I agree that over-reliance on natural gas could be a concern. However,
6		the figures cited by Ms. Jenner do not show that Duke would be over-relying on
7		natural gas without the Edwardsport IGCC Project. Indeed, Duke's system-wide
8		natural gas usage would only be between 6% and 12% by 2025. ²² This is not an
9		unreasonable amount. Similarly, the capacity factors that Ms. Jenner cites for the
10		Noblesville and new CC units ("up to 47%") are not unreasonable. Utilities
11		achieve 47 percent and higher capacity factors at combined cycle units on a
12		regular basis and assume such performance in their resource planning.
13		Fuel diversity is a good idea, especially for a Company like Duke Energy Indiana
14		which is heavily dependent on coal-fired power plants. In addition, increased
15		reliance on energy efficiency and renewable resources is another way, in place of
16		building the Edwardsport Project, for Duke to avoid unreasonably increasing its
17		reliance on natural gas.
18	Q.	Ms. Jenner testifies that with the anticipated promulgation of carbon
19		regulations, it is generally anticipated that natural gas prices will only
20		continue to rise, as more utilities rely on natural gas as the primary fuel
21		source. ²³ Do you agree?
22	A.	In theory, it is possible that natural gas demand could be higher due to CO ₂
23		emission regulations and, as a result, natural gas prices might be expected to be
24		higher than otherwise would be the case. However, the effect is very complicated
25		and will depend on a number of factors which will both increase and decrease the
26		demand for natural gas. These factors include: the amount of new natural gas
27		capacity that is built as a result of the higher coal-plant operating costs due to the

27

²¹

I<u>d</u>, at page 8, lines 21-23. <u>Id</u>, at page 8, lines 12-14. <u>Id</u>, at page 9, lines 2-14. 22

1		CO ₂ emission allowance prices; the amount of additional DSM and renewable
2		alternatives that become economic and are added to the U.S. system; the levels
3		and prices of any incremental natural gas import;, and changes in the dispatching
4		of the electric system. Indeed, given all of these factors it is possible that the
5		prices of natural gas would be reduced as a result of CO ₂ emissions regulations.
6		Thus, it is very difficult to determine, at this time, the amount by which natural
7		gas prices might increase, or even decrease, due to CO ₂ emission regulations.
8	Q.	Do you have any comment on the testimony of Ms. Jenner on the EIA's
9		recently released analysis of Senate Bill S. 2191, the carbon cap-and-trade
9 10		recently released analysis of Senate Bill S. 2191, the carbon cap-and-trade bill introduced by Senators Lieberman and Warner? ²⁴
	A.	
10	A.	bill introduced by Senators Lieberman and Warner? ²⁴
1011	A.	bill introduced by Senators Lieberman and Warner? ²⁴ Yes. Ms. Jenner is correct that the EIA scenarios that assume constraints on the
101112	A.	bill introduced by Senators Lieberman and Warner? ²⁴ Yes. Ms. Jenner is correct that the EIA scenarios that assume constraints on the development of new nuclear generation, biomass, and carbon capture and
10111213	A.	bill introduced by Senators Lieberman and Warner? ²⁴ Yes. Ms. Jenner is correct that the EIA scenarios that assume constraints on the development of new nuclear generation, biomass, and carbon capture and sequestration do show some moderate increases in natural gas prices. However,

16

24 <u>Id</u>, at page 9, lines 5-14.

Figure 6: CO₂ Prices in EIA Modeling of S. 2191 vs. versus the CO₂
Prices Duke Has Used in the Strategist Modeling for this
Proceeding (Annual Costs in 2007\$ per short ton of carbon dioxide equivalent) [REDACTED]

If Duke wants to rely on the results of these EIA modeling scenarios for the position that federal regulation of greenhouse gas emissions will lead to higher natural gas prices, it also should be using the CO₂ prices produced by the EIA in modeling those scenarios. It is inconsistent, and not supported by the EIA modeling, to assume that the much lower CO₂ prices that would result from the adoption of the Bingaman-Specter proposal, S. 1766, with safety valve prices, also would result in substantially higher natural gas prices. Indeed, we have seen no evidence supporting such a position in our reviews of any of the modeling analyses of any of the climate change proposals in the current U.S. Congress.

Q. Please summarize your conclusions.

16 A. It was reasonable in the spring of 2007 to assume that the construction cost of the
17 Edwardsport IGCC Project would increase above the Company's then current

1		estimate. Therefore, Duke should not have been surprised that the cost has risen
2		by 18.4 percent in the intervening year. It also is reasonable to expect that the
3		Project's construction cost will continue to increase as a result of the same
4		worldwide competition for power plant design and construction resources,
5		commodities and equipment that has led to the recent 18.4 percent increase.
6		In addition, the new Strategist modeling analyses presented by Duke witness
7		Jenner are critically flawed and biased in favor of the Edwardsport Project
8		because (1) the Company uses an unreasonably low set of CO ₂ prices and (2) it
9		failed to prepare any sensitivity analyses to reflect further plant construction cost
10		increases. Finally, Ms. Jenner overstates the threat to Duke Energy Indiana's
11		ratepayers of the addition of new natural gas-fired generating capacity in place of
12		the Edwardsport Project.
13	Q.	Does this complete your testimony?
14	A.	Yes.
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		